p -Hydroxyphenylacetic Acid Metabolism in Pseudomonas putida F6
نویسندگان
چکیده
منابع مشابه
p-Hydroxyphenylacetic Acid Metabolism in Pseudomonas putida F6.
Pseudomonas putida F6 was found to metabolize p-hydroxyphenylacetic acid through 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxybenzaldehyde. Cell extracts of P. putida F6 catalyze the NAD(P)H-independent hydroxylation of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid which is further oxidized to 3,4-dihydroxymandelic acid. Oxidation and decarboxylati...
متن کاملAmino acid racemization in Pseudomonas putida KT2440.
D-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d-amino acid metabolism. P. putida KT2440 catabolized the d-stereoisomers of lysine, phenylalanine, ...
متن کاملBypasses in intracellular glucose metabolism in iron‐limited Pseudomonas putida
Decreased biomass growth in iron (Fe)-limited Pseudomonas is generally attributed to downregulated expression of Fe-requiring proteins accompanied by an increase in siderophore biosynthesis. Here, we applied a stable isotope-assisted metabolomics approach to explore the underlying carbon metabolism in glucose-grown Pseudomonas putida KT2440. Compared to Fe-replete cells, Fe-limited cells exhibi...
متن کاملPanB is involved in nicotine metabolism in Pseudomonas putida
A nicotine-sensitive mutant was generated from the nicotine-degrading bacterium, Pseudomonas putida strain J5, by mini-Tn5 transposon mutagenesis. This mutant was unable to grow with nicotine as the sole carbon source but could grow with glucose. Sequence analysis showed that the Tn5 transposon inserted at the site of the ketopantoate hydroxymethyltransferase gene (panB), which had 54% identity...
متن کاملEstablishment of oxidative D-xylose metabolism in Pseudomonas putida S12.
The oxidative D-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on D-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g D-xylose(-1)) and a maximum growth rate of 0.21 h(-1). Remarkably, most of the genes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 2001
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.183.3.928-933.2001